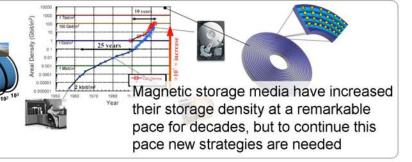
Hierarchically Self-Organizing Magnetic Nanomaterials

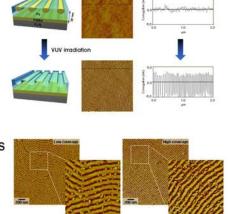

S.B. Darling^a, N.A. Yufa^b, S.D. Bader^a, and S.J. Sibener^b

^a Materials Science Division, Argonne National Laboratory

^b James Franck Institute, The University of Chicago

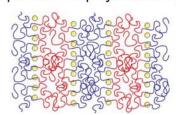
Motivation

The narrow length scale range of 1–100 nm is the focus of enormous scientific and technological interest, but creating useful, ordered structures in this range remains a grand challenge



Major Accomplishments

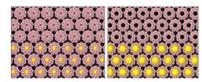
Combining top-down and bottom-up techniques to produce highly aligned arrays of nanoscale features over macroscopic length scales



UV-modifying diblock copolymer films to serve as highly selective adsorption scaffolds for FePt nanoparticles

Future Directions

Gaining control over intradomain ordering of nanoparticles on polymeric templates


Probing the 3-D structure of polymers in confined geometries via synchrotron studies

Using top-down approaches to tune the diffusion behavior of metals on polymer films

Tapping structural precision of biological materials for hybrid hard/soft matter nanomaterials

S.B. Darling and S.D. Bader, J. Mater. Chem. 15 (2005) 4189.

Journal of Materials Chemistry

